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Abstract

In this paper, a new class of numerical methods for the accurate and efficient solutions of parabolic partial differential
equations is presented. Unlike traditional method of lines (MoL), the new Krylov deferred correction (KDC) accelerated

method of lines transpose ðMoLTÞ first discretizes the temporal direction using Gaussian type nodes and spectral integra-
tion, and symbolically applies low-order time marching schemes to form a preconditioned elliptic system, which is then
solved iteratively using Newton–Krylov techniques such as Newton–GMRES or Newton–BiCGStab method. Each func-
tion evaluation in the Newton–Krylov method is simply one low-order time-stepping approximation of the error by solving
a decoupled system using available fast elliptic equation solvers. Preliminary numerical experiments show that the KDC
accelerated MoLT technique is unconditionally stable, can be spectrally accurate in both temporal and spatial directions,
and allows optimal time-stepsizes in long-time simulations.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we consider the numerical solution of a general parabolic partial differential equation (PDE)
of the form
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Lðut; u; ux; uxxÞ ¼ 0 ð1Þ

where u ¼ uðx; tÞ, x 2 ½a; b�, t 2 ½0; T �, and proper initial and boundary conditions are given. Examples include
the well-known diffusion (heat) equation
ut ¼ Duxx þ f ðx; tÞ

where D is the diffusion coefficient; the diffusion-reaction equation
ut ¼ Duxx þ f ðuÞ

which models many biological and chemical reaction processes; the nonlinear Schrödinger equation (NLS)
i�ut þ
�2

2
uxx � Vu� f ðkuk2Þu� �s argðuÞu ¼ 0
in solid state physics; and the Richards’ equation
½cðuÞ þ SsSaðuÞ�ut ¼ ½KxðuÞðux þ 1Þ�x

which simulates fluid flow and species transport in subsurface systems. In Eq. (1), u may be a vector of un-
knowns and hence L ¼ 0 is a system of equations. To simplify the discussions and focus on the ideas, we de-
scribe our algorithms in 1 + 1 dimensions in this paper. However, the paper is organized such that
generalization of the analyses and algorithms to higher dimensions is straightforward, and numerical results
in 3 + 1 dimensions are also presented.

Perhaps due to the popularity and success of numerical methods for solving initial value problems governed
by systems of ordinary differential equations (ODEs) and differential algebraic equations (DAEs), for time
dependent parabolic PDEs, a common practice is to first discretize the PDEs in the spatial direction using
finite difference, finite element, or spectral methods, and apply available solvers to the resulting ODE/DAE
system in which each entry represents the approximate solution at a specific location for all times. This
approach is commonly referred to as the ‘‘method of lines’’ (MoL) and interested readers are referred to
[24] for further discussions. We want to mention that although great progress has been made in the last cen-
tury, the disadvantages of existing MoL type time-stepping schemes using available ODE/DAE solvers are
also becoming obvious. These include (a) the step-sizes of available ODE/DAE solvers are often constrained
by the stability properties of the underlying methods, which may take the form of a CFL condition for certain
PDE problems and lead to unacceptably small time steps for many applications; (b) higher order versions of
existing ODE/DAE solvers either lack desired stability properties or are extremely complicated to solve, in
particular, as far as we know, no spectral or pseudo-spectral discretization based solvers are available for ini-
tial value problems; and (c) discretization in the spatial direction changes the structure of the PDEs, hence
existing extremely efficient elliptic equation solvers (e.g. fast multipole methods (FMM) accelerated integral
equation methods, and multigrid accelerated finite difference or finite element solvers) cannot be easily utilized
by available ODE solvers.

In this paper, inspired by the recent success of fast elliptic equation solvers (in particular, the FMM accel-
erated integral equation methods [6,20]) and the unconditionally stable arbitrary order Krylov deferred cor-
rection (KDC) methods for initial value problems [14,15], we discuss a new framework for constructing
efficient and accurate numerical methods for Eq. (1). In the new methods, to march the evolutionary PDEs
from t ¼ 0 to Dt, we first discretize the temporal direction (the transpose direction of traditional MoL) using
p Gaussian type nodes t ¼ ½t1; t2; . . . ; tp�T. To avoid the numerically unstable differentiation operator, we define
at each node point U iðxÞ ¼ Uðx; tiÞ ¼ utðx; tiÞ as the new unknown, and the discretized equations become
L U; u0 þ DtS �U;
d

dx
ðu0 þ DtS �UÞ; d2

dx2
ðu0 þ DtS �UÞ

� �
¼ 0 ð2Þ
where U ¼ ½U 1ðxÞ;U 2ðxÞ; . . . ;U pðxÞ�T is the desired approximation of Uðx; tÞ at different node points,
u0 ¼ ½uðx; 0Þ; uðx; 0Þ; . . . ; uðx; 0Þ�T the initial condition, S the spectral integration matrix as discussed in [8],
and � the tensor product (i.e. DtS is applied to each component of U). Due to the use of Gaussian type node
points, this ‘‘Method of Lines Transpose’’ ðMoLTÞ discretization achieves optimal order accuracy in each time
step for non-degenerating parabolic equations. However, the resulting elliptic equations are coupled as the
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spectral integration matrix S is dense, hence direct solution of Eq. (2) is in general computationally inefficient.
Instead, similar to the KDC methods, we assume a provisional solution eU ¼ ½ eU 1ðxÞ; eU 2ðxÞ; . . . ; eU pðxÞ�T is gi-
ven, and define the error as d ¼ U� eU ¼ ½d1; d2; . . . ; dp�T. A simple substitution yields an equation for d
L eU þ d; u0 þ DtS � ðeU þ dÞ; d

dx
ðu0 þ DtS � ðeU þ dÞÞ; d2

dx2
ðu0 þ DtS � ðeU þ dÞÞ

� �
¼ 0 ð3Þ
A low-order approximation �d of d can then be obtained by solving the equation
L eU þ �d; u0 þ DtS � eU þ DteS � �d;
d

dx
ðu0 þ DtS � eU þ DteS � �dÞ; d2

dx2
ðu0 þ DtS � eU þ DteS � �dÞ

� �
¼ 0

ð4Þ

using a low-order time marching scheme, where eS is the resulting lower-triangular approximation of the spec-
tral integration matrix S. Notice that the equations for �d are ‘‘decoupled’’ at different times (the equation at
node ti only involves U iðxÞ and previously computed U jðxÞ for j < i), hence the elliptic equation at each node
can be solved efficiently using available fast adaptive elliptic equation solvers. As the Jacobian matrix of the
‘‘implicit’’ function �d ¼ eHðeUÞ (we consider eU as the input variable in Eq. (4), and �d the output) is close to �I ,
the Newton–Krylov methods can be applied to find the zero of eHðeUÞ ¼ 0, an equivalent form of the colloca-
tion formulation in Eq. (2). We refer to this new time-stepping procedure as the KDC accelerated MoLT.

We want to mention that although less commonly used when compared with traditional MoL, the MoLT is
not new and has been previously studied by different authors. In particular, the transversal line method
(Rothe’s method) has been applied to PDEs of both parabolic and hyperbolic types, with the immediate
advantage that existing finite difference or finite element elliptic equation solvers can be easily adapted for bet-
ter efficiency and accuracy. However, in these attempts, very low-order time discretization schemes (e.g. back-
ward Euler’s method) were used, to avoid the coupled elliptic type equations in space resulting from higher
order discretizations. In this paper, by coupling the KDC methods and the fast elliptic equation solvers, we
show how this hurdle can be overcome for optimal accuracy and efficiency in both time and space.

This paper is organized as follows. In Section 2, we briefly discuss several essential preliminaries, including
the Krylov deferred correction methods for ODE and DAE problems and fast elliptic equation solvers using
integral equation formulations. The KDC accelerated MoLT is then introduced in Section 3, and properties of
the algorithm are briefly discussed in Section 3.4. In Section 4, preliminary numerical results are presented.
2. Preliminaries

In this section, we discuss two recently developed numerical techniques which serve as fundamental build-
ing blocks for the new class of time-stepping methods for parabolic PDEs. Specifically, Krylov deferred cor-
rection methods for ODE/DAE initial value problems and fast elliptic solvers are discussed in order.

2.1. Krylov deferred correction methods for initial value problems

The Krylov deferred correction methods [14] are based on the Newton–Krylov methods and spectral
deferred correction techniques briefly presented next.

2.1.1. Newton–Krylov methods

Consider a general algebraic system MðxÞ ¼ 0 with N equations and unknowns, and suppose an approxi-
mate solution x0 is known. Newton’s method can be used to iteratively compute a sequence of quadratically
convergent approximations (assuming the Jacobian matrix J M is non-singular at the solution) by updating
xnþ1 ¼ xn � dx;
where dx is the solution of the linear equation
J MðxnÞdx ¼ b ð5Þ
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with b ¼ MðxnÞ and J MðxnÞ the Jacobian matrix of MðxÞ at xn. When the matrix J M is dense, computing the
solution of this linear equation with Gaussian elimination requires OðN 3Þ operations. However, for many spe-
cial matrices, the amount of work required to find the solution can be greatly reduced. Consider the case
J MðxnÞ ¼ �I � C
where most of the eigenvalues of C are clustered close to 0. Because of the rapid decay of most eigenmodes in
Cqb, a more efficient approach than Gaussian elimination is to iteratively search for the optimal solution in the
Krylov subspace defined by
KqðJ M ; bÞ ¼ fb;Cb;C2b; . . . ;Cqbg

The iterations in Newton’s method and Krylov subspace methods can then be intertwined by reducing the
residual of the linearized system (5) by a prescribed factor using the Krylov subspace methods (instead of solv-
ing Eq. (5) exactly), and then start a new Newton’s iteration. Interested readers are referred to [16,17,23] for
detailed discussions of the resulting Newton–Krylov methods. In general, an efficient numerical implementa-
tion of a Newton–Krylov method depends on: (a) a formulation of the problem MðxÞ ¼ 0 such that J M is close
to the identity matrix �I ; and (b) an efficient procedure for computing the matrix vector product Cb (or equiv-
alently J M b). For (a), one common technique is to apply a ‘‘preconditioner’’ to the original system; and for (b),
when the analytical Jacobian is not readily available or inefficient to evaluate, a general forward difference
approximation can be adapted where for any vector v, J MðxÞv is approximated by
DhMðx : vÞ ¼ ðMðxþ hvÞ �MðxÞÞ=h ð6Þ

for some properly chosen parameter h (h may be complex). This difference approximation technique as well as
the choice of h have been carefully studied previously [16] and interested readers are referred to [18] for a sur-
vey of existing Jacobian-free Newton–Krylov methods and applications.

2.1.2. Spectral deferred correction (SDC) methods

Instead of a discussion of classical deferred and defect correction methods first introduced by Pereyra and
Zadunaisky [22,27,28], in the following, we focus on the SDC methods introduced in 2000 [5] for ODE initial
value problems
u0ðtÞ ¼ f ðt;uðtÞÞ; t 2 ½a; b�; uðaÞ ¼ u0:
As with classical deferred and defect correction methods, a single time step of an SDC method begins by first
dividing the time step ½0;Dt� into a set of intermediate sub-steps defined by the points t ¼ ½t1; t2; . . . ; tp�T with
0 6 t1 < � � � < tp 6 Dt (in SDC methods, t corresponds to the quadrature nodes of Gaussian type to avoid the
unstable interpolation using uniform grids). Second, a provisional approximation ~u ¼ ½u0

1;u
0
2; . . . ;u0

p�
T is com-

puted at the intermediate points using a low-order time-stepping scheme. Applying standard interpolation the-
ory, the continuous counterpart of ~u (for example, the Legendre polynomial expansion) is then constructed
and is denoted by u0ðtÞ. Third, utilizing the Picard integral equation, a corresponding integral equation for
the error dðtÞ ¼ uðtÞ � u0ðtÞ is constructed. Specifically
dðtÞ ¼
Z t

0

½f ðs;u0ðsÞ þ dðsÞÞ � f ðs;u0ðsÞÞ�dsþ �ðtÞ ð7Þ
where
�ðtÞ ¼ u0 þ
Z t

0

f ðs;u0ðsÞÞds� u0ðtÞ ð8Þ
and the approximations ½�1; �2; . . . ; �p� can be computed using spectral integration [8]. Note that the Picard
integral equation is numerically more stable than the original ODE which is used in the original deferred
and defect correction methods. Fourth, a lower order method is applied to approximate dðtÞ in Eq. (7).
For example, the backward Euler type method
~dmþ1 ¼ ~dm þ Dtm f tmþ1;u
0
mþ1 þ ~dmþ1

� �
� f tmþ1;u

0
mþ1

� �h i
þ �mþ1 � �m: ð9Þ
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The solution ~d ¼ ½~d1; ~d2; . . . ; ~dp�T which approximates dðtÞ is then added to the provisional solution ~u to form a
more accurate provisional solution. Finally, spectral integration is then again applied using Eq. (8) to accu-
rately compute the new �ðtÞ, and the iteration procedure continues until the residual is smaller than a pre-
scribed tolerance or a maximum prescribed number of iterations is reached. Note that the computational
complexity of solving the implicit Eq. (9) is the same as that of the low-order time-stepping method.

2.1.3. Krylov deferred correction (KDC) methods

In [19], it was noticed that when the original SDC methods are applied to stiff ODE problems, similar to
traditional initial value problem solvers, order reduction can be observed. This phenomenon was explained in
[14] by observing that the original SDC method for a linear problem is equivalent to a Neumann series
expansion
x ¼ bþ Cbþ C2bþ � � � þ Ckb � � �

for solving a preconditioned system ðI � CÞx ¼ b, where the preconditioner is one SDC iteration. Clearly,
when some of the eigenvalues of C are close to (but less than) 1, the Neumann series converges slowly, result-
ing in the ‘‘order reduction’’. Even worse, for DAE systems of the form
F ðyðtÞ; y0ðtÞ; tÞ ¼ 0; ð10Þ

it is numerically shown in [15] that straightforward extension of the SDC method is divergent for many sys-
tems as there exist eigenvalues with magnitude greater than one independent of the time step-size.

To accelerate the convergence (and avoid the divergence) of the original SDC methods, in [15], the KDC
methods were invented for general DAE systems (ODEs are index 0 DAEs). In these methods, a Picard inte-
gral type formulation is first employed
F y0 þ
Z t

0

Y ðsÞds; Y ðtÞ; t
� �

¼ 0
where Y ðtÞ ¼ y0ðtÞ is introduced as the new unknown function and yðtÞ is recovered using quadratures. Intro-
ducing the spectral integration matrix S as in [14], the discretized collocation formulation is given by
~F ð~y0 þ DtS � Y;Y; tÞ ¼ 0 ð11Þ

which is symbolically denoted as H(Y) = 0. The direct solution of H(Y) = 0 when p is large is in general com-
putationally inefficient as the matrix S is dense. Instead, in the KDC methods, a provisional solutioneY ¼ ½eY 1; eY 2; . . . ; eY p�T is assumed, and the discretized error vector is defined as

d ¼ Y� eY ¼ ½d1; d2; . . . ; dp�T. A simple substitution yields an error equation for d
~F ð~y0 þ DtS � eY þ DtS � d; eY þ d; tÞ ¼ 0: ð12Þ

Following the strategy for SDC methods for ODEs, a low-order time-stepping procedure can be applied to
Eq. (12) to yield an approximation ~d ¼ ½~d1; ~d2; . . . ; ~dp�T to the error. This is equivalent to solving
~F ð~y0 þ DtS � eY þ DteS � ~d; eY þ ~d; tÞ ¼ 0; ð13Þ

where eS is a low-order, lower-triangular approximation of the spectral integration matrix S. One such SDC
correction procedure can be considered as an ‘‘implicit’’ function
~d ¼ eHðeYÞ ð14Þ

where the provisional solution eY is the input variable and the output is ~d. As a reminder, the evaluation of eH
is nothing more than one iteration of the SDC procedure. Notice that when ~d ¼ 0, the solution to Eq. (13) is
identical to that of Eq. (11), i.e. solving the collocation formulation HðYÞ ¼ 0 is equivalent to finding the zero
of the implicit equation eHðYÞ ¼ 0. Therefore, instead of simply accepting the Neumann series solution using
the original SDC methods, the Newton–Krylov subspace methods can be applied to solve eHðYÞ ¼ 0, and the
resulting algorithm is referred to as the Krylov deferred correction (KDC) method.
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Because the low-order method solves an approximation of the collocation formulation, it is not surprising
that the explicit function eHðYÞ ¼ 0 is better conditioned compared with the original collocation formulation
in (11) as shown by the Jacobian matrix JeH of eH
JeH ¼ � o~F
oY
þ o~F

oy
Dt~S

 !�1
o~F
oY
þ o~F

oy
DtS

 !
¼ �I þ C ð15Þ
When o~F
oY

is non-singular e:g: o~F
oY
¼ I for ODE systems

� �
, since ~S is an approximation of S and Dt is small, JeH

is close to �I . This is the first requirement for the efficient application of Newton–Krylov methods. For com-

parison, the Jacobian matrix of H ¼ 0 is given by J H ¼ oH
oY
¼ o~F

oY
þ o~F

oy
DtS

� �
. Note that when any eigenvalue k of

the matrix C satisfies kkkP 1, the original SDC methods (consider the Neumann series for linear problems)
become divergent, on the other hand, the Newton–Krylov methods converge efficiently as long as the number
of such eigenvalues is small. We recall that the second requirement for the efficient application of Newton–
Krylov methods is an efficient procedure for computing the function eH. As noted earlier, this is simply one
sweep of SDC correction described succinctly in Eq. (13).
2.2. Fast elliptic solvers

Accurate and efficient numerical schemes for boundary value elliptic equations are an active area of
research. In the last twenty years, great progress has been made, examples include the fast algorithms accel-
erated integral equation methods (IEMs) for ODE boundary value problems of the form
u00ðxÞ þ pðxÞu0ðxÞ þ qðxÞuðxÞ ¼ f ðxÞ

for which a robust, adaptive, and extremely efficient algorithm was presented in 1997 by Greengard and Lee
[20]. In their algorithm, the solution is first represented as uðxÞ ¼ uhðxÞ þ uiðxÞwhere ui is a simple linear func-
tion and uh satisfies the homogeneous boundary conditions. Next, uh is represented as the convolution of a
given Green’s function Gðx; tÞ (e.g. the Green’s function for /00ðxÞ þ q0ðxÞ/ðxÞ ¼ 0 with homogeneous bound-
ary conditions with a given q0) with an unknown density function rðxÞ as uðxÞ ¼

R c
a Gðx; tÞ � rðtÞdt. A well-con-

ditioned second kind integral equation is then derived for rðxÞ
rðxÞ þ ~pðxÞ
Z c

a

d

dx
Gðx; tÞrðtÞdt þ ~qðxÞ

Z c

a
Gðx; tÞ � rðtÞdt ¼ ~f ðxÞ
where ~p, ~q, and ~f are explicitly determined by pðxÞ, qðxÞ, q0ðxÞ and uiðxÞ. This integral equation is then ‘‘re-
stricted’’ to each subinterval in an adaptive tree structure to resolve the solution, and the restricted local prob-
lem is solved efficiently using spectral methods. The local solutions are finally patched together by utilizing a
remarkable relation between different intervals, which can be solved directly and efficiently. Instead of the
implementation details of this method, which can be found in [20], in the following we list several remarkable
features of the solver: (a) the method is direct and very robust. The adaptive strategy requires no a priori infor-
mation of the solution, and the solution is resolved to a specified accuracy; (b) the method is extremely effi-
cient. With N grid points in a given mesh structure, the number of operations is asymptotically optimal OðNÞ
with a small prefactor; and more remarkably, (c) the adaptive code requires about twice as much as work as a
nonadaptive code that is simply given the final resolved mesh structure as input. In higher dimensions, fast
algorithm accelerated IEMs have also been successfully developed especially for constant coefficient elliptic
equations, including the Laplace, Poisson, Yukawa, Helmholtz, Stokes, and biharmonic equations
[3,4,6,9,10,26,21].

In addition to IEM-based schemes, spectral, multi-wavelets, higher order finite element and finite difference
methods can be applied to solve the elliptic type equations efficiently. In our numerical experiments, the algo-
rithm in [20] and fast spectral methods are used to solve the ODE two-point boundary value problems, and
multi-wavelets [7], FMM based and spectral methods have been applied to higher dimensional elliptic
equations.
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3. KDC Accelerated MoLT

In this section, we discuss the implementation details of the KDC accelerated MoLT .

3.1. Spectral integration and collocation formulation

To march the evolutionary PDE from t ¼ 0 to Dt, similar to the KDC methods, the MoLT first discretize
the PDE in the temporal direction (the transpose direction of traditional MoL) using p nodes
t ¼ ½t1; t2; . . . ; tp�T . Instead of uniform node points on which higher order interpolation is unstable, the
MoLT uses Gaussian type nodes (including Gaussian, Radau, and Lobatto quadrature nodes) and the corre-
sponding Legendre polynomial interpolation. More specifically, the Radau Ia quadrature nodes use the left
end point (i.e. t1 ¼ 0), the Radau IIa nodes use the right end point (i.e. tp ¼ Dt), and the Lobatto quadrature
nodes include both end points. Also, Chebyshev polynomials and the corresponding quadrature nodes may be
used instead of Legendre polynomial based nodes, which allows the fast Fourier transform (FFT) to be used
for acceleration. A comparison of the Chebyshev and Legendre polynomials based quadratures can be found
in a recent paper by Trefethen [25].

On each node point, to avoid the numerically unstable differentiation operator, we define
U iðxÞ ¼ Uðx; tiÞ ¼ utðx; tiÞ as the new unknowns, and recover uiðxÞ ¼ uðx; tiÞ by integrating the interpolating
Legendre polynomial (the coefficients are computed using the corresponding quadrature rules). The linear
mapping from fUiðxÞ; i ¼ 1; . . . ; pg to fuiðxÞ; i ¼ 1; . . . ; pg is referred to as ‘‘spectral integration’’, and the
corresponding matrix denoted by S is the spectral integration matrix (see [8]). The discretized equation
becomes
L U; u0 þ DtS �U;
d

dx
ðu0 þ DtS �UÞ; d2

dx2
ðu0 þ DtS �UÞ

� �
¼ 0 ð16Þ
where U ¼ ½U 1ðxÞ;U 2ðxÞ; . . . ;U pðxÞ�T is the desired approximation of Uðx; tÞ at different node points and
u0 ¼ ½uðx; 0Þ; uðx; 0Þ; . . . ; uðx; 0Þ�T is the initial condition. As Gaussian type nodes are used in the MoLT , this
collocation formulation can be spectrally accurate for non-degenerating parabolic equations.
3.2. Error equation and spectral deferred correction

Notice that the discretized collocation formulation in Eq. (16) consists of a group of elliptic equations cou-
pled by the dense spectral integration matrix S. Its direct solution is in general computationally inefficient.
Instead, similar to the KDC methods, we assume a provisional solution eU ¼ ½ eU 1ðxÞ; eU 2ðxÞ; . . . ; eU pðxÞ�T is
given, and define the error as d ¼ U� eU ¼ ½d1; d2; . . . ; dp�T . The continuous counterparts of d and eU derived
by polynomial interpolation are denoted as dðx; tÞ and eU ðx; tÞ, respectively. A simple substitution yields an
equation for dðx; tÞ given by
L eU þ d; u0 þ
Z t

0

ð eU þ dÞds;
d u0 þ

R t
0
ð eU þ dÞds

� �
dx

;
d2ðu0 þ

R t
0
ð eU þ dÞdsÞ

dx2

0@ 1A ¼ 0 ð17Þ
where u0 ¼ uðx; 0Þ, and the variables in eU ðx; tÞ and dðx; tÞ are omitted in the notation. Applying spectral inte-
gration to the integrals in this equation, the discretized ‘‘error equation’’ is given by
L eU þ d; u0 þ DtS � ðeU þ dÞ; d

dx
ðu0 þ DtS � ðeU þ dÞÞ; d2

dx2
ðu0 þ DtS � ðeU þ dÞÞ

� �
¼ 0 ð18Þ
where DtS is the spectral integration approximation of the operator
R t

0
.

Notice that
R t

0
dðsÞdsðdð0Þ ¼ 0Þ can also be approximated by low-order integration rules. For the rectangu-

lar rule using left end point (explicit Euler method), the corresponding integration matrix is given by
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DteS ¼
0 0 � � � 0 0

Dt2 0 � � � 0 0

Dt2 Dt3 � � � 0 0

� � � � � 0 0

Dt2 Dt3 � � � Dtp 0

26666664

37777775 ð19Þ
and for the rectangular rule using right end point (implicit Euler method),
DteS ¼
Dt1 0 � � � 0 0

Dt1 Dt2 � � � 0 0

� � � � � 0 0

Dt1 Dt2 � � � Dtp�1 0

Dt1 Dt2 � � � Dtp�1 Dtp

26666664

37777775: ð20Þ
A low-order approximation �d of d can then be obtained by solving the system
L eU þ �d; u0 þ DtS � eU þ DteS � �d;
d

dx
ðu0 þ DtS � eU þ DteS � �dÞ; d2

dx2
ðu0 þ DtS � eU þ DteS � �dÞ

� �
¼ 0

ð21Þ

which is equivalent to a low-order time marching scheme where the equations for �d are decoupled at different
times. The elliptic equation at each node ti can then be solved efficiently using available elliptic equation solv-
ers as discussed in Section 2.2.

3.3. Newton–Krylov method acceleration

Notice that Eq. (21) can be considered as an ‘‘implicit function’’ where eU is the input variable and �d the
output function value. We symbolically denote the explicit form of this function as
�d ¼ eHðeUÞ: ð22Þ

When eU solves the collocation formulation in Eq. (16), it can be seen that �d ¼ 0. Therefore, solving the col-
location formulation is equivalent to solving
eHðeUÞ ¼ 0: ð23Þ

Compared with the original collocation formulation, the ‘‘preconditioned’’ formulation in Eq. (23) is better
conditioned. Similar to Eq. (15), it is straight forward to show that the Jacobian matrix of the functioneHðeUÞ is closer to �I and we neglect the details. Hence the Newton–Krylov methods can be applied to the
preconditioned system, in which each function evaluation of eHðeUÞ is simply the low-order time-stepping re-
sults in Eq. (21), and the elliptic equation at each time step can be solved efficiently using available fast elliptic
equation solvers. We refer to this approach as the KDC accelerated MoLT .
3.4. Algorithm properties

In this section, we discuss several analytical results concerning the accuracy, stability, efficiency, and orders
of the new approach.

The accuracy of the KDC accelerated MoLT for each time step is determined by (a) the accuracy of the
collocation formulation in Eq. (16); (b) the accuracy of the Newton–Krylov methods, and (c) the accuracy
of the fast elliptic equation solvers. For (a), as the Gaussian type nodes are used, it is not hard to see that
the resulting formulation is spectrally accurate, e.g. for fixed step-size, the numerical error decays exponen-
tially when the number of nodes increases, and for prescribed accuracy requirement, when more node points
are used, extremely large time step-sizes can be used. These are very important features for long-time simula-
tions. The convergence and accuracy of the Newton–Krylov methods in (b) have been widely studied previ-
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ously. It can be shown that super-linear local convergence can be obtained for specially chosen parameters in
the Newton–Krylov schemes (see Theorem 6.1.2 in [17]). For arbitrary initial approximations, continuation/
homotopy methods may become necessary to accomplish global convergence. Interested readers are referred
to [16,17] for further discussions. For (c), instead of the ‘‘order of convergence’’ concepts commonly used in
the finite difference and finite element methods, most recently developed fast IEM solvers generate numerical
results with prescribed accurate digits, therefore the accuracy in (c) is guaranteed.

In [12], it was shown that for ODE problems, the collocation formulation is equivalent to certain
Runge–Kutta methods (see p. 27 in [12]). When Gaussian or Radau IIa node points are used in the temporal
discretization, the method is A-stable and B-stable [2,12]. Based on these existing results and assume the
spatial elliptic equations are solved exactly, we conclude that the KDC accelerated MoLT is unconditionally
stable. In our numerical experiments, no CFL constraints have been observed, and optimal step-size can be
used. The efficiency of the KDC accelerated MoLT is determined by the number of iterations in the
Newton–Krylov procedure which depends on the structure of the problem, low-order preconditioners (Euler,
trapezoidal rule, splitting methods, semi-implicit approaches, etc.), and Krylov subspace methods (GMRES,
BiCGStab, TFQMR, etc.). Currently, detailed comparisons of different strategies and acceleration techniques
for optimal efficiency are being performed.

Finally, it is well-known that for ODE problems, when p Gaussian nodes are used and the collocation
formulation is solved exactly, the resulting scheme has order 2p. When Radau nodes are used, the scheme
has order 2p � 1 [11,13]. For stiff ODE systems and DAEs, however, order reductions of collocation meth-
ods (these reductions are different from the ones introduced by Neumann series expansion) have been
observed as described in [11,13]: for stiff problems, the Gaussian and Radau IIa based methods are B-con-

vergent with order p (see p. 247 [13]); for index 2 DAEs, the order of the algebraic components is only p or
less (see p. 18, Table 2.3 [11]). For parabolic PDEs, our preliminary analyses show that the order of the
method depends on the boundary conditions (periodic, Dirichlet, Neumann conditions for u or ut), step-size
(as our schemes allow very large time steps, the B-convergence concept has to be introduced), and existence
of any additional algebraic constraints. These will be briefly illustrated by several numerical experiments in
the following section. Detailed order analysis for PDE systems is currently being performed and will be
reported later.
4. Numerical experiments

In this section, we show several preliminary numerical results. The new methods are implemented in Matlab

and Fortran. Both Radau IIa and Gaussian nodes have been tested for temporal discretizations.
4.1. The diffusion equation in 1-D

To illustrate the basic properties of the KDC accelerated MoLT methods, we first consider the homoge-
neous heat equation
ow
ot
¼ o

2w
ox2
with exact solution w ¼ cosðxÞe�t. We assume periodic boundary conditions on ½0; 2p� and compute the initial
condition at t ¼ 0 accordingly. For this equation, as the decoupled elliptic equations can be solved exactly, we
focus on the errors introduced by the temporal discretization, and study the order of convergence in our new
approach.

In Fig. 1, the max error at time t ¼ 10 is plotted as a function of step-size. In the left plot, we use six Radau
IIa points with full GMRES iteration. Numerical results show that the error quickly converges to machine
precision with approximate order 11.1. Similarly in the right plot, results using six Gaussian nodes are pre-
sented showing approximate order 12.3. These agree with the theoretical results (under certain assumptions)
that the collocation formulation is order 2p � 1 for p Radau IIa points, and order 2p for p Gaussian nodes.
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Fig. 1. Convergence of the KDC Accelerated MoLT with full GMRES using Radau IIa (left) and Gaussian (right) nodes.
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Fig. 2. Numerical error as a function of (a) number of Radau IIa nodes and (b) step-size.
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We also consider the inhomogeneous diffusion equation
ow
ot
¼ o2w

ox2
þ f ðx; tÞ
with exact solution w ¼ cosðxÞ sinðtÞ on ½�1; 1�, and Dirichlet boundary conditions and f ðx; tÞ are specified
accordingly. The elliptic equation solver used in this example is based on the spectral integration method
introduced by Greengard in [8]. In (a) of Fig. 2, we march from t ¼ 0 to t ¼ 10 using six uniform steps,
and plot the max error as a function of the number of Radau IIa collocation points. It can be seen that
the error quickly decreases to machines precision when the number of nodes increases. In (b), we fix the num-
ber of Radau IIa nodes to p ¼ 4, and plot how the error decays as a function of step-size. In this experiment,
order reduction has been observed, we believe this is due to (a) the boundary conditions which serve as alge-
braic constraints in the formulation; and (b) large step-sizes so B-convergence has to be discussed. This order
reduction is being studied and detailed analysis will be reported later.
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4.2. Variable coefficient parabolic problem

For our next example, we consider a parabolic system on x 2 ½0; 1� and t 2 ½0; T � given by
MðxÞ ow
ot
¼ NðxÞ o

2w
ox2
þ f ðx; tÞ
This equation represents a class of parabolic systems including the linearized Richards’ equation in porous
medium and the variable coefficient diffusion system
MðwÞ ow
ot
¼ o

ox
KðwÞ ow

ox

� �

We use the exact solution
wðx; tÞ ¼ ecosð2pðxþt2ÞÞ�kt
and define
MðxÞ ¼ 2þ cosð2pxÞ; NðxÞ ¼ 2þ cosð4pxÞ:

Periodic boundary conditions are imposed and we set w0ðxÞ ¼ ecosð2pxÞ at t ¼ 0 as the initial condition. The
source term f ðx; tÞ is determined accordingly. In the simulation, as the solution is periodic, the spatial domain
equations can be solved using Fourier series based spectral methods. Similar to the homogeneous heat equa-
tion case, our numerical experiments show that the KDC accelerated MoLT approach converges with desired
order, and we neglect the details.

Previous research shows that when GMRES is applied in the Newton–Krylov method, the memory
required increases linearly with the iteration number k, and the number of multiplications scales like 1

2
k2N .

Hence, for large k, the GMRES procedure becomes very expensive and requires excessive memory storage.
For these reasons, instead of a full orthogonalization procedure, GMRES can be restarted every k0 steps
where k0 < N is some fixed integer parameter. The restarted version is often denoted as GMRES(k0). Alter-
native options include the biconjugate gradients stabilized (BiCGStab) method and transpose-free quasi-min-
imal residual (TFQMR) algorithm (See [1] for a summary of existing Newton–Krylov methods). The storage
required in these methods is independent of the iteration number k, and the number of multiplications grows
only linearly as a function of k. We next study the effect of using different Krylov subspace methods on the
efficiency of our approach. In Fig. 3, we show how the errors decay with increased number of iterations
for different Krylov subspace methods. In the calculation, we use 32 grid points in space and 26 Radau IIa
nodes in time to fully resolve the solution to machine precision within one time step from t ¼ 0 to t ¼ 0:5.
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It can be seen that alternative approaches perform similarly to the full GMRES scheme in efficiency for this
specific example, while requiring much less memory storage.

4.3. Schrödinger equation

In this example, we consider the linear time dependent Schrödinger equation in one-dimensional space
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wtðx; tÞ ¼ �iHðx; tÞwðx; tÞ ð24Þ

where Hðx; tÞ ¼ � 1

2
r2 þ V ðx; tÞ is the Hamiltonian and the potential term is given by V ðx; tÞ ¼ �e�0:1ðx�0:1tÞ2 .

We set the initial condition to wðx; 0Þ ¼ eixvw0ðxÞ, where w0ðxÞ is an eigen-function of H. The exact solution at
time t can be analytically computed as eixv�iðEþv2=2Þtw0ðx� vtÞ, with E the eigenvalue corresponding to w0.

In our simulation, as the solution decays rapidly for large x, periodic boundary conditions on ½�L; L� with
L ¼ 30 can be imposed. We use the Fourier series expansion with 128 sampling points in space, and 3 Gauss-
ian type nodes in time to march the solution from time t ¼ 0 to t ¼ 2:5. The error tolerance is set to 1e� 10
when solving the collocation formulations. The orders of convergence are presented for Gaussian nodes in (a)
(approximate order 6) and Radau IIa nodes in (b) (approximate order 5) of Fig. 4, respectively.

In [12], it was shown that when Gaussian nodes are used, the resulting collocation formulation better pre-
serves the Hamiltonian structure of the original PDEs, and hence the method is called ‘‘symplectic.’’ In (a) of
Fig. 5, we can see that even though the solution error is large, the energy is conserved when symplectic schemes
are used, while both solution and energy errors increase rapidly in (b) when a non-symplectic scheme using
Radau IIa nodes is applied. Therefore, when the energy conservation is critical in a simulation (e.g. for sta-
bility considerations), Gaussian nodes are recommended. However for general partial differential algebraic
systems, severe order reduction may be observed for Gaussian nodes, and Radau IIa nodes are recommended
instead, as discussed in [11].

4.4. A nonlinear parabolic equation

In this example, we consider a nonlinear diffusion equation of the form
wt ¼ ðw6=5 þ 1Þwxx þ 2wwxðwx þ 1Þ þ f
with Dirichlet boundary conditions, whose analytical solution is given by
wðx; tÞ ¼ ex2þsin t
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In the numerical simulation, we apply the Jacobian-free Newton–Krylov technique in which the matrix vector
product is approximated by the forward difference approximation (see Eq. (6)). The decoupled nonlinear ellip-
tic equation in every step of the low-order time-stepping method required by each function evaluation is solved
by a nonlinear version, two-point boundary value problem solver developed by Greengard and Lee [20] briefly
introduced in Section 2.2.

The simulations run from t ¼ 0 to t ¼ 5 using Radau IIa nodes for each time step and the error tolerance is
set to 1e� 11. The spatial domain ½�1; 1� is divided into 20 equi-spaced subintervals and a 10th order poly-
nomial is used inside each subinterval to resolve the solution. In the Newton–Krylov methods, we terminate
the Krylov subspace iterations as long as the residual is reduced by a certain factor (determined dynamically,
see [16,17]) or a prescribed number of iterations is reached. As shown in Fig. 6, using time step-size Dt ¼ 1, the
global error at t ¼ 5 decays very rapidly as the number of Radau IIa nodes increases.
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4.5. Diffusion equation in 3 + 1 dimensions

Finally in this section, we consider the three-dimensional diffusion equation
owð~x; tÞ
ot

¼ r2wð~x; tÞ þ f ð~x; tÞ
where~x 2 R3, t 2 ½0; T �, and asymptotic boundary conditions are imposed at far field. We define the analytical
solution w as
wð~x; tÞ ¼ e�j~xj
2

sinðtÞ

and compute the source term f accordingly.

Our simulations run from time t ¼ 0 to T ¼ 4 for one time step using 3 – 6 Gaussian nodes. The compu-
tational domain is set to ½�6; 6�3, so that the real solution and its derivatives (up to second order) vanish to
about 1e� 11 on the boundaries. The multi-wavelets method-based package MADNESS [7] is applied for the
efficient solution of the three-dimensional elliptic equations. We use nine multi-wavelets of degrees 0–8 in each
spatial dimension and set the threshold to 1e� 9. In Fig. 7, we plot the numerical errors as a function of the
number of Gaussian nodes. Similar to previous results, the error rapidly decays to prescribed accuracy as the
number of Gaussian nodes increases.
5. Concluding remarks

In this paper, a new framework for the efficient and accurate solutions of time dependent parabolic equa-
tions is presented. Our preliminary analysis and numerical experiments show that the KDC accelerated MoLT

methods are very promising for accurate and efficient long-time large-scale simulations. However, further
analyses and optimized implementation are required in order to fully explore the efficiency and accuracy of
the new methods. These include the detailed convergence order analyses of the methods (in particular, the
order reductions related with boundary conditions), optimized strategies for adaptive mesh refinements, order
selections in both time and space, proper Newton–Krylov methods, simplified Newton’s method, proper treat-
ment of the differential and algebraic components in the equations, as well as the optimal choice of many dif-
ferent parameters. Also, this new technique can be generalized to problems with multiple temporal and spatial
scales, and to other type PDEs when the solution is smooth so higher order methods are advantageous.
Results along these lines will be presented in the future.
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